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ABSTRACT 

Finite element (FE) models of the brain are regularly 
used to investigate brain injury mechanisms. Validation 
of these models against cadaver impacts is usually 
restricted to intracranial pressure data. However, the low 
shear modulus of neural tissue means that injurious 
strains result from shear deformations. We show that 
brain injury models that are validated for pressure alone 
can give a wide range of shear responses to the same 
impact. 

Holbourn’s arguments on the harmlessness of pressure 
are extended by introducing separate wave equations for 
pressure and shear, derived from the Helmholtz vector 
decomposition. Two idealised models of traumatic brain 
injury are used to show that there is no one-to-one 
relation between pressure and shear in head impacts 
lasting a few milliseconds. The first is an analytical 
model of wave propagation in the brain under the action 
of local skull bending. The second is a strain-validated 
FE representation of the coronal plane of the human 
head under rotational acceleration. 

As there is no one-to-one relation between dilatation 
and distortion in typical head impacts, it is not 
acceptable to validate FE models for pressure and then 
use them to predict injury. 

INTRODUCTION 

In the early 1940’s, Holbourn argued that the controlling 
parameters for traumatic brain injury (TBI) are skull 
bending, skull fracture and rotation of the head [7,8]. 
His arguments were strongly founded on Newton’s laws 
of motion and were derived mainly from observations 
regarding the material properties of cerebral tissue. 
Although many researchers have cited the research, his 
arguments and conclusions regarding the harmlessness 
of pressure seem largely to have been disregarded. 

In the present article, Holbourn’s arguments are 
developed further with the introduction of wave 
equations for pressure and shear (Equations 10 and 11), 
which themselves are derived from the Helmholtz 
vector decomposition of the displacement field 
(Equation 9). We will show that, for peculiar materials 
like brain tissue, there is no one-to-one relation between 

pressure and shear in impacts lasting a few milliseconds. 
This has serious implications for testing of FE models. 

The arguments developed in this article are most 
relevant to those brain injuries that are caused by 
excessive stretching of neural tissue. They are therefore 
principally directed towards diffuse axonal injuries 
(DAI). Injuries caused by skull fracture or penetration 
are not covered, neither are injuries caused by excessive 
motion of the cerebrum within the cranial vault, such as 
acute subdural haematoma (ASDH). 

DILATATION AND DISTORTION 

Holbourn’s arguments derived from the observation that 
the brain is far more resistant to compression than to 
shear. The compression, or dilatation (% ), of a small 
tissue element is given by 

 
�

�6 6E% � , (1.) 

where 6E  is the volume change and 
�

6  is the initial 
volume (Figure 1a). 

a) Dilatation (compression)

b) Distortion (shear)  
Figure 1. 

Schematic diagram of dilatational and distortional 
strains in a small sample of brain tissue. 

The dilatation is related to the pressure (P ) and the bulk 
modulus of a material (+ ) by the expression 

 P +� � % . (2.) 

The bulk modulus of cored samples of the human brain 
is 2.07 GPa, which is not significantly different to that 
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of water [13]. Thus, the typical peak positive pressures 
encountered in TBI (200 kPa to 500 kPa) generate very 
small dilatational strains (1 × 10-4 to 2 × 10-4). 

In contrast to the unique description of dilatation, there 
are several different descriptions of shear strain, or 
distortion ( Fa ). The description used here is the 
Lagrangian shear strain, which is approximately equal 
to half the angle H  in Figure 2. 

 ��F Ha � . (3.) 

γ ll0 small values of
in units of radians

360° = 6.28 rad

γ

Figure 2. 

Schematic diagram of distortional strain in 2D. 

The distortional strain is related to the shear stress ( T a ) 
and the shear modulus (N ) by the expression 

 � �F H T Na a� � . (4.) 

The shear modulus of cored samples of human brain is 
time dependent, but lies in the range 1 kPa to 10 kPa, 
approximately a million times smaller than the bulk 
modulus [5]. Typical distortional strains measured in 
physical models of TBI are of the order (1 × 10-2 to 
2 × 10-1) [4,10,12,14]. Thus, in brain injury, dilatational 
strains are approximately a thousand times smaller than 
distortional strains. 

Tissue level models have successfully shown that 
axonal injury is initiated by the physical process of 
extension or stretching [1,2]. The maximum principal 
strain (

)
F ) is a measure of the maximum stretch that a 

neuron experiences, and therefore is a good injury 
predictor. In the 2D example shown in Figure 2, the 
maximum principal Lagrange strain is given by 

 	 
	 
�

�)
��� � �L LF � � . (5.) 

As the volumetric strains in TBI are extremely small by 
comparison with distortional strains, we can deduce 
certain relations between distortional strains and the 
maximum principal strain. In 2D (Figure 2), the relation 
is very simple. It is given by 

 
)

F Fa ; . (6.) 

In 3D (Figure 1), the relation is more complex as there 
are now three distortional strains. The maximum shear 
strain ( MAXFa ) is a measure of the greatest shear at a 
point. The relation between maximum distortional and 
maximum principal strain is given by 

 � �
MAX MAX� �)
F F Fa a� � . (7.) 

In summary, there are minor differences (less than a 
factor of 2) between maximum shear strain and 
maximum principal strain in TBI problems. However, 
we can state categorically that the dilatation is far 
smaller than both of these, by a factor of approximately 
1 000. The principal purpose of this article is to 
demonstrate that there is no relation between the 
maximum principal strain and the pressure during 
closed head injury, and therefore that pressure is not 
suitable as a model testing parameter. 

WAVE EQUATIONS 

The effects of a localised force applied abruptly to a 
point in a medium soon transmit to other parts of the 
medium. This simple fact forms the basis of study of 
impact problems from the perspective of wave 
propagation.  

Two distinct wave types propagate through a material 
under dynamic loading: dilatational and distortional 
waves. The two wave types propagate at different 
speeds, 

D
C  and 

S
C , respectively given by: 

(dilatation) 	 
	 

�
��

�D
�C + N S� � , (8a.) 

(distortion) 	 

�
�

S
�C N S� . (8b.) 

where S  is the mass density. 

Associated with each point in a medium is a local 
displacement vector , U , which may be split into two 
parts: G�  for the dilatational wave component, and 
�qY  for the distortional component. Thus, 

 G� � � �qU Y . (9.) 

The G  and Y  functions are called the scalar and vector 
potentials of U ; they obey the separate wave equations 

 
�

�

� �

D

�
C T

G
G

s
� �

s
, (10.) 
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Pressure and shear waves in the brain 

A typical value of 
D
C  for either grey or white matter is 

1 410 m·s-1. This is so large that a pressure pulse can 
travel across the cranial diameter about 10 times per 
millisecond. Therefore, in blunt head impacts, where the 
duration is generally 2 ms or more, the pressure 
response within the head arrives at hydrostatic 
equilibrium almost instantaneously. In this case, the 
pressure is dependent only on the density of the 
material, and not on its shear or bulk modulus. The 
pressure distribution in the brain is of the form 

 P HUS� &&; . (12.) 

The consequences are illustrated for a translational 
frontal impact to the head in Figure 3. The instantaneous 
pressure within the brain follows a linear variation with 
position, falling from 151 kPa at the front (coup) to 
���  kPa at the rear (contrecoup). The head 

acceleration and cranial dimensions are chosen to match 
the moment of peak force in the cadaver impact 
experiment of Nahum (1977), and are shown on the 
figure [13]. 

 
Figure 3. 

Schematic diagram of linear pressure variation 
hypothesis. The figure shows the predicted pressure 
distribution at the moment of peak loading from a 
cadaver impact experiment conducted by Nahum 
(1977). 

Further evidence to support these observations may be 
found in Thomas et al. (1967) [16]. 

Typical values of 
S
C  are three orders of magnitude 

lower than 
D
C : 

S
C  = 1.5 m·s-1 to 2 m·s-1. The ratio of the 

two wavespeeds #  ( S D
�C C ) is of order 10-3. The transit 

time for a shear wave pulse crossing the cranium is of 
order 100 ms, a long time on the blunt head impact 
timescale. As principal strains are dominated by shear 
strain, wave effects can therefore be expected to play a 
dominant role in TBI. 

Hypothesis that pressure and shear are controlled by 
unrelated material parameters 

Guided by these observations, we arrive at a hypothesis 
concerning pressure and shear in TBI and their 
dependence on material properties. We postulate that, 
for any given motion of the skull that is consistent with 
closed head impact (blunt impacts, no depressed 
fracture or penetration), separate tissue parameters 
determine the two responses of transient intracranial 
pressure (ICP) and maximum principal strain (

)
F ). 

Specifically: 

• ICP time-history at any point in the brain following 
impact is independent of tissue elastic properties 
(+ ,N ) for typical translational impacts 
(duration > 2 ms), but is dependent on the density. 

• The principal strain time-history at any point in the 
brain following impact is dependent almost entirely 
on distortional wave speed 

S
C . 

In the following sections of this article, the hypothesis 
will be tested against accurate predictions from two 
specific brain injury models, in which the geometry has 
been simplified to permit reliable calculations of 
dilatation and distortion. The first model is analytical 
and considers the situation where the driving 
mechanism is local skull deformation. The second is 
numerical (FE) with experimental validation, and 
considers rigid skull rotation as the driving mechanism. 

Implications of the hypothesis 

If the hypothesis above can be validated for the typical 
range of blunt head impacts, there are significant 
implications for FE models of TBI. Required inputs for 
FE models are the shear and compressional wavespeed 
of neural tissue. Researchers often adjust these 
parameters to achieve agreement between 
cadaver-impact pressure data and the FE simulation. 

If pressure is the only test variable, validation for 
principal strain is impossible: the principal strain 
depends critically on tissue values that have no bearing 
on the pressure. Recall here that is it principal strains 
that cause injury, not dilatational. 
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SKULL DEFORMATION MODEL 

The hypothesis will be tested first against an analytical 
model designed to capture the physics of wave 
transmission within the cerebrum and subarachnoid 
layer, under the action of local skull deformation. 

 
Figure 4. 

Diagram of the subarachnoid space. Note the 
arachnoid trabeculations and cerebral blood vessel. 
Adapted from Gray (1995) [6]. 

The analytical model includes a representation of the 
subarachnoid space, containing the cerebrospinal fluid 
(CSF) and the arachnoid trabeculations, as well as the 
cerebrum (Figure 4).  

A plane boundary, representing the inner surface of the 
skull, vibrates in the normal (

�
X ) and tangential (

�
X ) 

directions (Figure 5). 

boundary condition (skull)

Cerebrum

wave potentials

dilatational distortional

Subarachnoid space

ρ( )cd cs0 η s

( )νρ cd csf0

1ŵ

2ŵ 3ŵ

4ŵ

5ŵ 6ŵ

x1

2x

3x

ω k( )  
 
Figure 5. 

The boundary represents the skull, a fluid layer 
represents the subarachnoid space (containing CSF 
and trabeculae) and the semi-infinite medium 
represents the cerebrum. 

The relations between material parameters and 
dilatational and distortional wavespeeds in the cerebrum 
are summarised by the following expressions: 

 	 
� �

D D� D

�
� JC C

M N
I

S
�

� � � . (13.) 

were the Lamé constant �
�+M N� � , and 

D
I  is the 

frequency dependent loss factor. 

 	 
� �

S SS�
� JC C

N
I

S
� � � . (14.) 

In the fluid layer we have: 

 	 
� F F �

DF DF� DF

F

�
� JC C

M N
I

S
�

� � � , (15.) 

 	 
� F �

SF SF� SF

F

� JC C
N

I
S

� � � . (16.) 

In Figure 5 we have introduced the assumptions that the 
densities and dilatational wave speeds in the two layers 
are the same. The constraints are added primarily to 
simplify the problem, and also because these parameters 
are not the focus of the study. Thus 

 
F

S S� , and 
DF D
C C�  (17.) 

so �

F F D
� � CM N M N S� � � � . (18.) 

The problem is further simplified by requiring that 
D
C  

be real (i.e. 
D

I  = 0). These assumptions reduce the 
number of independent material parameters to six: S , 

D
C , 

S
C  and 

SF
C  (both complex). 

The shear material parameters for the subarachnoid 
space arise from a combination of the CSF, which is 
modelled as a Newtonian fluid with kinematic viscosity 
O , and the trabeculae, which contribute a small elastic 
component, 

F
' . Thus 

 	 
� F �

SF SF� SF
� JC C

N
I

S
� � � , (19.) 

where 
F F

J'N XSO� � . (20.) 

To summarise, the properties of both media are now 
completely specified in terms of ( SS�D SF�

� � � � �C C CS O I ). 

Solution to analytical model 

The solution to the analytical model is given in concise 
form in Appendix A. The complete derivation of 
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displacements, velocities, strain and stress fields and 
dimensional analysis can be found in Bradshaw (2001). 

The output dilatation and distortion are a function of the 
non-dimensional input groups \ ^ST

� � � � �# 3 -A 2E I H , 
where the group of interest here is # , the ratio of the 
wavespeeds in the cerebrum 

S� D
�C C . Typical values are 

used for the other groups. A more thorough 
investigation of the model is presented elsewhere [3]. 

Results from analytical model 

Focusing on the dilatation amplitude and not its phase, 
graphs are presented for the real quantities 

 
� �

� �

e

e

: :

: :

�

�
. (21.) 

where 
�
e:  and 

�
e:  are the complex transfer functions 

between the velocity input boundary condition (
�
eV  and 

�
eV ) and the dilatation in the cerebrum. 

From Appendix A we note that the peak maximum 
distortion (

PEAK
E% ) is a non-linear function of the 

complex response functions \ ^� � � �

e e e e� � �$ $ % % . 
Consequently, graphs are presented for the real 
quantities 

 

	 


	 


�PEAK D

�
�

�PEAK D

�
�

e

e

e

e

E V C
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V

E V C
%

V

¸
�

¸
�

%

%
. (22.) 

Figure 6 contains two graphs that show how the 
non-dimensional dilatation and distortion vary as a 
function of # , the real wavespeed ratio. Panel ‘a’ 
shows the responses for a tangential velocity boundary 
condition, while panel ‘b’ shows the responses for a 
normal velocity boundary condition. In each case, #  is 
varied by one decade either side of the typical value 
(#  = 10-3). This is equivalent to varying N  by four 
decades whilst holding +  constant. 

The fact that there is a flat response for the dilatation 
while the distortion varies is clear evidence that there is 
no one-to-one relation between dilatation and distortion 
in this model. 

Clearly, many further investigations could be pursued 
with the analytical model. For example, we can 
investigate the effect of the thickness of the 
subarachnoid space on the coupling between the skull 
and the brain, or the effect of the elasticity provided by 

the arachnoid trabeculations. In addition, the response at 
a range of trace Mach numbers might be sought. These 
investigations are all presented in Bradshaw (2001). 
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Figure 6. 

Non-dimensional dilatation and maximum 
distortional response as a function of # , the ratio of 
real wave speeds, 

S� D
�C C . 

SKULL ROTATION MODEL 

The second model was designed to capture the physics 
of brain deformation driven by rotation of the whole 
head in the coronal plane. A 2D FE model (Figure 7), 
with a slip boundary condition over most of the skull 
interior, contains a representation of the falx, the sulci 
and the cerebrum. 

The model was developed in LS-DYNA [11], an 
explicit FE code capable of non-linear behaviour. 2D 
plane-strain element formulations were used. 

The geometry was based on measurements taken from 
MRI scans. Justification for the circular approximation 
to the brain geometry in the mid-coronal plane, and the 
extent of the no-slip boundary condition, is shown in 
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Figure 8. Further details of the physical model geometry 
can be found elsewhere [4]. At least 10 elements per 
wavelength are required for a maximum 2 % error [3]. 
HyperMesh [9] was used to generate an FE mesh with a 
characteristic element size of 1 mm that, together with 
the material properties detailed below, results in a model 
that can accept input energy at frequencies up to 200 Hz 
(see Figure 7). 

M3

Trosseille (1992)
Pressure
Transducer

 
Figure 7. 

Schematic diagram of FE model of coronal plane. 
The position of the Patrick marker in the corpus 
callosum is highlighted: M3=(0,19). 

Material models 

The material properties of the cerebrum were 
approximated by a three-parameter Boltzmann model. 
Volumetric strains are elastic, and deviatoric strains are 
viscoelastic with shear relaxation behaviour described 
by an impulse response function 

 	 
 	 

�

E T' T ' ' ' C�
d d

� � � . (23.) 

The available test data on the gel are limited to the 
frequency range 1 Hz to 20 Hz [10]. An acceptable fit 
between experimental data and an FE material model is 
found using 

�
'  = 3 846 Pa, '

d
 = 893 Pa and 

C  = 187 s-1 [3]. 

The sulci were represented by  0.2 mm sheets of an 
elastic material (%  = 20 MPa, V  = 0.3, 
S  = 1 × 103 kg·m-3). An elastic material model was also 
used for the aluminium skull (%  = 700 MPa, V  = 0.3, 
S  = 274 × 103 kg·m-3). The properties used for the 

aluminium where chosen to improve the timestep of the 
solution. The difference has no effect on the results. 

Boundary conditions 

Representing the boundary condition between the brain 
and the skull has been a perennial problem in FE 
models. A satisfactory solution has been found here in 
the form of a 2D sliding only contact. This contact 
allows frictionless slip between the skull and the brain, 
without unrealistic separation of the two materials or 
gross element deformation. 

The model was tested by comparing nodal 
displacements and strain output with data obtained from 
physical model experiments reported in Bradshaw et al. 
(2001). Comparisons can be found in Bradshaw (2001). 

Figure 8. 

MRI scan of mid-coronal plane through the 
brainstem. Note the circular approximation to the 
geometry in this plane and the extent of the no-slip 
boundary condition in the skull base. 

FE model output 

Rectangular Cartesian axes 
� � �

/8 8 8  were defined 
with their origin at the centre of rotation of the model. 
The axes rotated with the aluminium vessel, so that 
displacements were calculated with respect to the skull. 
The nodal position and strain at M3, highlighted with a 
Patrick marker in Figure 7, were extracted from the FE 
output database. 

Analyses completed 

The model was loaded with the rotational acceleration 
time-history shown in Figure 9. The impact is 
characterised by a peak angular acceleration of 
7 800 radÂV-2, which roughly corresponds to a serious 
brain injury threshold in man. 
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Figure 9. 

Skull kinematics. Angular acceleration and angular 
displacement of the skull are shown for a typical 
experiment (filtered with SAE C1000). 

Three analyses were completed using different values 
for the shear material properties of the brain. The short 
and long term shear moduli were varied by a factor of 
10 either side of typical value for human tissue (see 
Table 1). All other parameters were unchanged. 

Table 1. 

Summary of cerebral material properties used 

 #  + (MPa) 
�

' (Pa) '
d

(Pa) C (s-1) 

I 1.4×10-3 210 385 89 187 
II 4.3×10-3 210 3 846 894 187 
III 1.4×10-2 210 38 460 8 936 187 

Results from FE numerical analyses 

Figure 10a shows the pressure time-history predicted at 
M3 in the corpus callosum, for analyses I, II and III. 
The peak pressures from the three analyses are 
indistinguishable from each other (25 kPa), despite the 
wide variation in the shear modulus of the brain. 
Generally, the pressures in the three simulations are 
lower than intracranial pressure measurements made 
during cadaver impacts, and nowhere exceed 30 kPa 
[15,17]. The principal reason is that the acceleration 
input in the simulation was purely rotational. 

Figure 10b shows the predicted maximum principal 
strain response at M3 for analyses I, II and III. The peak 
strains during the first 50 ms of each analysis are 0.578, 
0.228 and 0.059 for 

�
'  = 0.39 kPa, 3.9 kPa and 39 kPa 

respectively. To a good approximation, the peak strain 
response is inversely proportional to 

�
' . 

 

 
Figure 10. 

Summary of results from analyses I, II and III: 
Pressure and maximum principal strain time 
histories for M3, in the corpus callosum. 

Thus varying shear material properties by an order of 
magnitude, above and below baseline values that are 
appropriate for human cerebral tissue, produces little 
change in the pressure response in an FE model of TBI. 
At the same time, the peak maximum principal strain is 
very sensitive to changes in shear modulus. 

DISCUSSION 

We have noted that the bulk modulus of the cerebrum is 
approximately 106 times larger than the shear modulus. 
There are several direct consequences: 

• The dilatational (pressure) wavespeed is ~103 times 
faster than distortional. 
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• Dilatational strains in the cerebrum are ~104 times 
smaller than distortional. 

• The maximum principal strain is approximately 
equal to the maximum shear strain. 

Tissue level models of DAI have successfully shown 
that injury is a function of strain [1,2]. Given the 
relative magnitudes of the dilatational and distortional 
components, we can say that DAI is a function of 
distortion and not of dilatation (pressure). 

The hypothesis is proposed that separate brain tissue 
parameters determine the intracranial pressure response 
and distortional strain response in typical blunt head 
impacts. Two separate models of TBI, investigating 
injury mechanisms based on skull bending and rigid 
skull rotation, have shown that: 

• There is no correlation between the distortion and 
the dilatation (pressure). 

We conclude that it is not sufficient to test/validate 
numerical (FE) models for pressure prior to using them 
to predict injury. In fact, as the intracranial pressure 
response is a hydrostatics type problem, controlled only 
by the density of the cerebrum (and the elastic moduli of 
the skull), better predictions of intracranial pressures 
can be obtained more readily with hand calculations 
than with FE models. 

In the absence of strain data from cadaver impacts, 
numerical modellers can do little more than ensure that 
the shear material properties that they use are correct. 
However, in an authoritative review of the time 
dependent shear material properties of human brain, 
Donnelly (1998) shows that the short and long-term 
shear moduli (

�
'  and '

d
) are in the region of 1 kPa. 

In a review of material parameters used in recent FE 
models, Bradshaw (2001) demonstrates that various 
authors have used values for the short and long-term 
moduli in the range 17 kPa to 528 kPa, which is 
inconsistent with the experimental data. The distortional 
strain, maximum principal strain and injury prediction 
capabilities of these earlier models are therefore in 
question. 

CONCLUSIONS 

• The high bulk modulus of neural tissue means that 
the positive pressures typically encountered in head 
impact do not produce large strains. Positive 
intracranial pressures of order 100 kPa are therefore 
probably of little consequence to TBI. 

• The low shear modulus of neural tissue means that 
principal strains are controlled by shear 
deformations. Therefore, the shear strain response 
in FE models is of critical importance if such 
models are to be used to model TBI. 

• A two-layer analytical model of TBI, incorporating 
a fluid model of the subarachnoid space with a 
small amount of elasticity to represent the 
trabeculae, shows that the shear properties of the 
brain may be varied over a wide range with very 
little effect on the pressure response. 

• A coronal plane numerical model of blunt head 
impact has also shown that the shear properties of 
the brain may be varied over a considerable range 
with little effect on the pressure response. 

• As there is no one-to-one relation between 
dilatation and distortion in head impacts lasting 
more than 2 ms, it is not sufficient to validate 
numerical (FE) models for pressure and then expect 
them to predict brain injury. 
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APPENDIX A – Analytical model derivation 

Dispersion relations 

The model has been set up so that waves of frequency 
X  are travelling along the boundary with trace 
wavespeed 

T
C . First, introduce the free-wave 

wavenumbers 

 
D

�CL X� , 
S

�CL Xa �  and 
F SF

�CL Xa � . (A1) 

The travelling-wave boundary condition imposes the 
same 

�
X  direction wavenumber on all waves, whereas 

the 
�

X  direction wavenumbers depend on the free-wave 
wavenumbers. Thus 

 
T�

�K CX� , � �

� �
JK K L� � � , (A2a-b) 

with similar expressions for 
�
K a  and 

�F
K a  using La  and 

F
La . Note that 

��F
K K� , since 

DF D
C C� . 

The sign of the wavenumbers is chosen to ensure that 
waves are either propagating or evanescent in the 
positive 

�
X  direction. 

Potentials and displacements 

The displacement potentials above (superscript +) and 
below (superscript –) the interface between the solid 
half-space and the fluid layer are considered separately. 
The common factor 	 


� �
JE T K XX ��©  describes the 

	 

�
�X T  dependence for all the waves. 

 � �
J

�
e E K XWG� �� © , (A3) 

 � �
J

�
e E K XW: a� �� © , (A4) 

 	 
� � � �
J J

� �
e eE EK X K XW WG� �� � © , (A5) 

 	 
� ��F �F
J J

� �
e eE EK X K XW W: a a� �� � © . (A6) 

The complex wave amplitudes e
I

W  ( I  = 1 to 6) are the 
unknowns. Certain relationships between them are 
required by matching displacements and stresses at the 
interface between the two layers. 

Solution 

The displacement components are readily obtained from 
the Helmholtz decomposition (Equation 9). The 
dilatational and distortional components of the strain 
tensor are calculated from the expression 

 
�
�

JI
IJ

J I

UU
X X

F
� ¬ss ­� ­� �� ­� ­­�s s� ®

, (A7) 

and the components of the stress tensor 
IJ

T  are related 
to the components of the strain tensor by 
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 �
IJ IJ IJKK

T ME F NF� � , (A8) 

where 
IJ
E  is the Kronecker delta, and M  and N  are the 

Lamé material constants. 

The displacement and stress fields are continuous at 

�
�X � . There are therefore four matching conditions: 

Two displacement conditions and two stress conditions. 
The equations resulting from the matching conditions 
must be solved for 	 
e �������

I
W I �  in terms of 

�
eW  

and 
�
eW . 

For a given frequency X  and wavenumber 
�
K  along the 

boundary, the total particle velocity vector on the 
boundary (

�
X L� � ) can be expressed as eL� �U V© . 

Thus, differentiation with respect to time of the 
displacement equations gives the components of the 
velocity vector eV  at the boundary in terms of the 
complex wave amplitudes 

�
eW  to 

�
eW . 

Substituting for 
�
eW  to 

�
eW  from the matching conditions 

and then solving for 
�
eW  and 

�
eW  leads to expressions for 

the wave potentials in the cerebrum that are simply 
unmanageable to present here. However, the full 
working for the steps above and the resulting potentials 

�
eW  and 

�
eW  can be found in Bradshaw (2001). 

The expressions for the dilatation and maximum 
distortion are 

 �

�
eeZ WL� � , (A9) 

where eZ% � © , and (as a real, not phasor, variable) 

 \ ^ \ ^
�

�e e2E 2EE D E  ¯  ¯� �¡ °¢ ±¢ ±
% © © , (A10) 

where 	 
�
� �� ��

eDF F� � © , 

and 
��

eEF � © . 

 
� � �� � ��

PEAK
e e ee e e� � � � ��E D E D E D EB�%  (A11) 

where 	 
e eCOS �ARG �ARGD EB � � . 

Dimensional analysis 

Since the problem is linear for small eV , each output 
variable 	 
ee e� �Z D E  may be written in the form 

 
� � � �
e e ee e e eZ Z V Z V� � � ¸Z V , (A12) 

where the coefficients e
I
Z  are complex response 

functions that are independent of eV  (as with e
I

D  and e
I
E ). 

Then the list of physical variables that describe the 
solution may be summarised by 

 \ ^

� �

� �

� �

SS�� D SF�

� �

� �

� �

e e

e e

e e
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e e

e e

e e

Z Z

Z Z

D D
K L C C C

D D

E E

E E

X O I

£ ² £ ²¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦�¤ » ¤ »¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦¥ ¼ ¥ ¼

. (A13) 

As there are only two dimensions on the right hand side 
< >,�4 , the number of independent variables can be 
reduced from eight to six. This is achieved by using 

D
C  

and L  as dummy (scaling) variables. The six input 
groups are obtained in the usual way and, after 
rearrangement for physical significance, we obtain 

 

cerebral shear wavespeed ratio

Stokes number

trace Mach number

Reynolds number

loss factor

CSF shear wavespeed number

S�

D

�

T

T
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D

S S

SF�

D

C
#

C

L
3

C
-A

C
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C
C

X
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�

�

 

The final dimensionless form is therefore 
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